Translating "proof-of-the-concept" in approved medicines

Operational challenges; Opportunities for partnerships

Convertir un concept en une nouvelle approche thérapeutique

Obstacles opérationnels; Opportunités de partenariat

Dr Anne Mathieu-Boué
Directeur Médical Oncologie, Novartis Pharma France
Dr Renaud Capdeville, MD
Vice-President, Novartis Oncology Development, Basel, Switzerland

Disclaimer

The views expressed in this presentation are those of the presenter and do not represent the views of Novartis AG.

... Oncologists probably know all about the concept of targeted therapy

- Prescribe the right treatment
- For the right patient
- At the right time
- For the right reason
- And with a predictable outcome

Conceptually, biomarkers can be used...

...to select patients

...to measure drug effect

HER-2 CD-20 FLT-3 Estrogen R. CD33

KIT PML-RARα K-RAS Bcr-Abl (RT-PCR) DCE-MRI FDG-PET RT-PCR LIC, ferritin Ki67, TUNEL pS6K

Question

Mostly used to establish "proof of the concept"

Phase III trials & Patients care

3 Examples

Glivec/Tasigna (BCR-ABL inhibitors)

Everolimus (mTOR inhibitor)

Midostaurin (FLT3 inhibitor)

3 Examples

- Glivec/Tasigna (BCR-ABL inhibitors)
 - PCR-based molecular response as primary trial endpoint
- Everolimus (mTOR inhibitor)

Midaustorin (FLT3 inhibitor)

"Response" is a moving target Example of CML

The Philadelphia Chromosome in CML

→ RT-PCR: Measure in peripheral blood cells the ratio of the Bcr-Abl mRNA transcript over a control housekeeping gene

p185 BCR-Abl

The success of Glivec prompted worldwide collaborations to set international PCR standards

Review in translational hematology

Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results

Timothy Hughes, Michael Deininger, Andreas Hochhaus, Susan Branford, Jerald Radich, Jaspal Kaeda, Michele Baccarani, Jorge Cortes, Nicholas C. P. Cross, Brian J. Druker, Jean Gabert, David Grimwade, Rüdiger Hehlmann, Suzanne Kamel-Reid, Jeffrey H. Lipton, Janina Longtine, Giovanni Martinelli, Giuseppe Saglio, Simona Soverini, Wendy Stock, and John M. Goldman

- Major Molecular Response (MMR)
 - Definition of original IRIS phase III trial: 3-log reduction in RT-PCR
 BCR-ABL transcripts from a standardized baseline
 - International scale definition: BCR-ABL transcripts <0.10% using a conversion factor derived from local baseline reference standards

Hughues et al., NEJM, 2003, 349: 1421-30 Hughues et al., Blood, 2006, 108: 28-37 Druker et al., NEJM, 2006, 355: 2408-17 A Phase III, randomized, open-label study of 400 mg versus 800 mg of imatinib mesylate in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular endpoints – TOPS (Tyrosine Kinase Inhibitor Optimization and Selectivity) Study

Cortes J, Baccarani M, Guilhot F, Druker B, Yu R, Rudoltz M, Krahnke T, Hughes T on Behalf of the TOPS Study Group

Study Design

Total 5 years

Detect a difference of 20% for the MMR rate at 12 months (i.e., from 40% to 60% with a 90% power)

- Cytogenetic analysis every 6 months until CCyR, then every 12 months
- Molecular analysis by PCR every month x 3, then every 3 months

Setting a truly global network

Each value atiolation bed Rayolates specific CF

Imatinib 400 mg vs 800 mg in CML-CP: Time to First MMR by Treatment Arm

Imatinib 400 mg vs 800 mg in CML-CP: MMR Rates Over Time (ITT)

3 Examples

- Glivec/Tasigna (BCR-ABL inhibitors)
 - PCR-based molecular response as primary trial endpoint
- Everolimus (mTOR inhibitor)
 - multiparametric biomarker data to guide dose selection and decision making
- Midostaurin (FLT3 inhibitor)

Selection of Dose and Schedule: The RAD001 Experience

RAD001 Preclinical pharmacology

- CA20948 syngeneic rat pancreas tumor model
- Anti-tumor activity
- PD effect of RAD in target pathway in normal tissues and tumor
- PK studies at effective doses
- IC50 levels in vitro

RAD001 Phase Experience: Two Clinical Trials

- Daily and weekly schedules
- Safety at increasing doses in sequential cohorts of pts
- PK studies
- Anti-tumor activity
- PD effect of RAD in target pathway in normal tissues and tumors
- Define Optimal Biological
 Dose

PK/PD modeling of inhibition of S6K1 in patients

Continuous, optimal, target inhibition is predicted to be achievable through the use of daily dosing schedules

Improved Clinical and Cell Cycle Response With an mTOR Inhibitor, Daily Oral RAD001 (Everolimus) Plus Letrozole Versus Placebo Plus Letrozole in a Randomized Phase Il Neoadjuvant Trial in ER+ Breast Cancer

- J. Baselga,¹ P. van Dam,² R. Greil,³ H. Gardner,⁴ R. Bandaru,⁴ B. Molloy,⁵ J. Steinseifer,⁵ P. Phillips,⁶ J. M. Dixon,⁷ H. S. Rugo⁸
- ¹Hospital Vall D'Hebron, Barcelona, Spain; ²Onc Centrum St Augustinus, Wilrijk, Belgium; ³University Hospital, Salzburg, Austria; ⁴Novartis Institutes for Biomedical Research, Cambridge, MA; ⁵Novartis Pharma AG, Basel, Switzerland; ⁶Novartis Pharmaceuticals Corporation, East Hanover, NJ; ⁷Western General Hospital, Edinburgh, United Kingdom; ⁸University of CA SF, San Francisco, CA

Patients and Methods

Study design

 Phase II, randomized double-blind placebo-controlled trial conducted at 68 sites in Europe and the United States

AMB/RC - Giens 2008 21

Integration of biomarkers in future confirmatory phase III adaptive design (1)

- Adaptive trial: two stages, with an interim analysis, to simultaneously meet
 - > Phase II objectives
 - to confirm greater benefit in independently identified subpopulation
 - to decide whether or not to adapt trial to focus on that subpopulation
 - > Phase III objective
 - to demonstrate superiority on time to event (phase III) endpoint

Analytes and Reagents

Prototype pharmacodiagnostic antibodies

Phospho S6 Ser 240/244

Phospho Akt Ser 473

Cyclin D1

PTEN

Clone DAK-S6-240, Dako prototype assay

Clone 14-5, Dako prototype assay

Clone DCS-6 Dako prototype assay

Clone 6H2.1 Dako prototype assay

Other assays

Phospho S6 Ser 235/236

Estrogen receptor

Progesterone receptor

- Ki67

- AIB1

– p53

Total S6

Total Akt

Her2 FISH

PIK3CA mutation

TP53 mutation

Clone 1B2, Cell Signaling Technologies, product 4857

Clone SP1, Rabbit, Ventana, product 790-4324

Clone 1E2 Rabbit, Ventana, product 790-2223

Clone 30-9 Rabbit Ventana, product 790-4288

BD Transduction Laboratories, product 61105

Clone DO-7 Mouse Dako, product M 7001

Clone 156.17.41, Novartis

Clone E45 1085-1, Rabbit, Epitomics

Her2/neu, Ventana, product 780-2840

Surveyor/Wave and direct sequencing of exons 9 and 20

Surveyor/Wave and direct sequencing of exons 5-8

Results **Efficacy Summary**

Overall Response (CR + PR), %

	Everolimus + Letrozole n = 138	Placebo + Letrozole n = 132	P
Palpation (primary end point)	68.1	59.1	.062*
Ultrasound	58.0	47.0	.035*

^{*1-}sided chi-square level of significance is 10%.

Results **Major Pharmacodynamic Changes at Day 15**

Reduction in pS6240 and pS6235 reveals everolimus-treated patients

Results Cell Cycle Response (Ki67)

- Ki67 expression was measured in 91 everolimus and 82 placebo patients, from whom an evaluable baseline tumor sample and an evaluable day 15 biopsy were obtained
- Patients with < 2.7% Ki67⁺ tumor cells (ie, ln[%Ki67⁺]< 1) at day 15 are defined as "cell cycle responders"¹

Results Change in Ki67 Values From Baseline to Day 15

 At day 15, a large difference in Ki67 values is seen between the everolimus + letrozole and the placebo + letrozole arms, which was not seen at baseline

Results Cell Cycle Response (Ki67)

- Clinical evaluation of response correlates moderately with extent of reduction in Ki67
- Designation of progressive disease correlates well with high proliferation
- However, clinical categorizations are poor predictors of low Ki67 values

AMB/RC - Giens 2008

28

3 Examples

- Glivec/Tasigna (BCR-ABL inhibitors)
 - PCR-based molecular response as primary trial endpoint
- Everolimus (mTOR inhibitor)
 - multiparametric biomarker data to guide decision making
- Midostaurin (FLT3 inhibitor)
 - FLT3 gene mutations screening to select patients

FLT3 Structure and Activating Mutations

Study 2106: Phase 1b Study of Midostaurin (50 mg bid) Plus **Chemotherapy: Response**

- No significant difference in response rates or duration of remission between the sequential and concomitant schedules
- Midostaurin decreased elimination of daunorubicin but did not appear to interact with cytarabine

Response rate of midostaurin in combination with chemotherapy (N = 39)

Stone RM, et al. Blood. 2006;108:Abstract 157.

RATIFY Trial: Exploring New Treatment Option for High Unmet Need Flt-3 Mutated AML Patients

Primary endpoint: overall survival

RATIFY: CALGB Intergroup Study (CALGB 10603)

RATIFY: FLT3 Mutation Analysis

Lab results will specify:

– FLT3^{WT} or FLT3^{mut}

- FLT3^{mut} TKD FLT3^{mut} ITD

 If ITD, allelic ratio (mut to WT) <0.7 or ≥0.7 for stratification

RATIFY: Participating Labs

FLT3-Diagnostics: International Validation

Prevalidation phase

Crossvalidation phase

3/07 5/07 7/07

3 x 11 samples 8 ITD 3 TKD 12/07

every six months

25 samples

15 ITD

- 5 wt samples
- 5 ITD ratio 0.7
- 5 ITD ratio 0.05

10 TKD

- 5 TKD ratio 0.05
- 5 TKD wt

Conclusion (1)

- Moving an assay from "proof of the concept" to large global registration phase III trials is a complex endeavor involving multiple hurdles
- This complexity cannot be underestimated
- Managing this complexity proactively is key to successfully develop important targeted anticancer therapies

Connecting knowledge and experience

INDUSTRY

Drug discovery

Operational experience

Expertise in the "science" of drug development

Global infrastructure, reaching multiple "pockets" of knowledge around the world

Experience with health authorities

ACADEMIA

- Scientific & technical knowledge
- but spread in multiple labs
- Access to clinical samples
- Close to clinical investigators

HEALTH AUTHORITIES

Adequate Risk/benefit assessments

Protect patients safety

Ensure proper use of new drugs in the right patients

Conclusion (2)

 The resolution of the challenges of developing and "scaling up" biomarkers provide an ideal platform to optimize industry-academic partnership, exploiting each other expertise

Acknowledgements

- The numerous investigators and scientists, with whom I worked closely on the programs presented here
- The patients, whom by their participation to these trials are contributing enormously to expand our knowledge on the use of anticancer therapies
- The numerous colleagues at Novartis, who helped me assembling the data needed for this presentation

Backup Slide

Question

What are the hurdles in moving a "proof of the concept" biomarker research assay into a large scale registration clinical trial ...,

... and subsequently into a clinical management tool?

AMB/RC - Giens 2008 42

RAD001 in Breast Ca Ph 2 (NCI-Canada) Better anti-tumor activity with daily than weekly

